Thursday, 23 January 2014

Kings of the New World (1): The Jaguar

by Rob Cooper

In the late 1700’s French naturalist George Louis Leclerc, Comte de Buffon (who is a strong contender for the ‘most unnecessarily long French name ever’ award) theorised that all life in the new world was innately inferior to that of the old world due to its poorer climate. In this series of articles I look to refute Buffon, who was otherwise a most admirable scientist and philosopher, and expose the majesty of American wildlife. It is worth remembering that Buffon later withdrew these claims after Thomas Jefferson presented him with a stuffed Moose. 

I begin with a trio of top predators vying for control of the southern American rainforests and wetlands. The first of our contenders is the eponymous ‘beast that kills in one leap’… The Jaguar



The Jaguar is the third largest cat on the planet, averaging 100kg in the Pantanal region of Brazil, and is one of the most unusual of the big cats. Superficially it resembles a leopard although closer inspection will inform you the Jaguar is quite a different beast. Similar to the tiger it is consummately at home in the water and predates on many aquatic and semi-aquatic animals. Unlike the leopard the Jaguar is covered in rosettes rather than spots and as evidenced by its stocky build and heavy limb musculature is a much more heavily built animal. A Jaguar has been known to drag a 360kg Bull over 8 meters in its jaws. The Jaguar also has the highest bite force of any cat and the second highest bite force of all carnivorous mammals able to apply a bite with nearly a tonne of force (916kg).

The Jaguar is commonly mistaken for a ‘black panther’ a term that generally encompasses darker coloured Jaguar and Leopards. In reality there is no such thing as a panther and the black colouration is the result of a genetic mutation causing overproduction of the pigment making the coat appear black. However upon close inspection it is clear the usual coat markings are present. Similar mutations can be found in almost all extant animal groups.


But the main way in which the Jaguar differs is in its prey base and method of killing. The Jaguar is a great generalist and hunts a huge number of reptile species from Caimans to turtles and even the fabled anaconda and is capable of hunting all terrestrial and aquatic  vertebrates that share it’s habitat including tapir, sloths, capybara, deer, peccaries, armadillos, fish and all manner of monkey species.

Whilst the Jaguar often kills its prey via placing its jaws around the throat and suffocating the prey as many modern big cats do it is also uniquely proficient at biting straight into the skull of prey items; a technique rarely seen in mammalian predators . This appears to explain why the Jaguar has such an enormous bite force. In prehistoric America this killing technique allowed the Jaguar a crucial advantage over sabre toothed cats who tended to slash the aorta and trachea of their prey. A group of large mammals at the time known as glyptodonts (related to the modern armadillo and could reach the size of a small car) had their neck obscured by a large protective shell, rendering the attacks of sabre toothed cats huge canines moot. However this defence was ineffectual against the Jaguar which could bite straight through the skull of the giant glyptodont and secure itself a meal unavailable to its more specialised contemporaries. 

Even today the Jaguar still exhibits a remarkable affinity for hunting creatures normally off the menu to most mammalian predators and as this remarkable video shows is capable of stalking and killing the semi-aquatic Caiman from the Caiman’s preferred environment… The water and acutely shows why the Jaguar is often described as a beast that can kill on one leap.



The Jaguar is currently a near threatened species. Rapidly declining populations across South America mean it is likely to face extinction in the near future. The reasons for this are roughly two-fold; deforestation and persecution by farmers and livestock owners. In comparison to most cats attacks on humans perpetrated by the Jaguar are exceedingly rare but the taking of livestock is common. This has led to the cats being shot on sight and even the origin of professional Jaguar hunters, paid by farmers to kill local Jaguar.

This threat however is more than a threat merely to Jaguar. As the top of the food chain in many areas of South America the Jaguar represents a Keystone Species meaning it plays an important role stabilizing ecosystems by maintaining population numbers. This means the decline of the Jaguar could well lead to the decline of many new world ecosystems. However this also means that the protection of the Jaguar can safeguard a wide range of organisms and ecosystems. The Jaguar is also a principal Umbrella species; a species that has a range sufficiently broad that, if protected, ensures the protection of many smaller ranging species. 

As well as being a majestic and powerful creature the Jaguar offers a medium by which a large portion of new world flora and fauna can be safeguarded by protecting only a single species, making the mighty big cat even more relevant today than it ever has been before. 

Check out this awesome video of a jaguar taking down a crocodile!

Sunday, 19 January 2014

Art of Science

The 'Art of Science' is an annual competition that the Faculty of Medical and Veterinary Sciences at the University of Bristol hold. Researchers in the Faculty submit the coolest of images to be judged this year by our very own Dean, George Banting and Sabrina Taner from Wellcome Images.

Check out some of the images from the competition held in December that are on display in the @Bristol Cafe.


Rachel Curnock


Laura Senior

Ilona Aylott

Nicole Antonio

Sasha Woods

Saturday, 11 January 2014

China Lead World in Push for Wind Power

by Toby Benham


China plans to more than double its number of wind turbines in the next 6 years. This bold move involves increasing the nationwide wind power capacity from 75 gigawatts (GW) to 200 GW. To put this into context, all of the countries of the EU combined have a total capacity of around 90 GW. This is an important positive move for a country that is a leading contributor of greenhouse gases. Wind turbine technology is improving due to the massive market potential. Current efforts are innovating the field while simultaneously lowering prices. This is beneficial to other countries worldwide. The opportunity arises to either purchase turbines from the Chinese or further their research. While sustainable energy is the way forward there are still problems to be addressed. 

While China contributes to 26.7% of the worlds installed wind power capacity, this only meets 2% of the country’s power demands. In fact 75% of their power still comes from coal. Clearly more needs to be done in an effort to phase out fossil fuels for renewables. For this to happen, renewable energy technologies need to be improved to be able to provide more power and deliver it to the right places. Excellent research has been carried out to bring us the technology we have today. However there are serious problems when trying to use these technologies to supply countries with large quantities of power. Energy storage is a key issue. Sticking with wind, generally the amount of wind is intermittent. This means that there is either no electricity being generated or too much to cope with. Last year in China around a quarter of turbines were left off during the windiest times because the turbines are vulnerable to damage during high winds. Another problem is that the windiest places are generally far away from the cities that require power from them. New advances may provide answers to these issues, but it is difficult to tell if this will be years or decades away. One thing is for certain; China should be commended for taking a step in the right direction. This is an opportunity for other countries to follow suit and develop more renewables.

Friday, 20 December 2013

The Musical Brain

2013 BNA Christmas Symposium overview

by Jonathan Smith

How does the human brain distinguish music from noise? What brain regions are active when we react to music? Do we all share an intrinsic musicality? How do you make a duck into a soul singer?

These important questions were discussed this month in an annual Christmas symposium held by the British Neuroscience Association (BNA). Speakers from all over the UK were invited to present their findings on the special relationship between Homo sapiens and music. These talks were also interspersed with live music, refreshments and humorous ‘Christmas Crackers’ such as the latter question asked above. In this article I summarise the research discussed in this exciting symposium.

Distinguishing music from noise by pattern-detection
It’s rare to be in a completely silent environment, even in university exams! Being able to tell apart rhythm from random noise is very advantageous. This is because we can be alerted to someone’s footsteps for example, which can let us calculate all sorts of useful information such as the proximity, speed and even mood of the walker.

Dr Maria Chait from the University College London (UCL) demonstrated that humans are incredibly sensitive to rhythmic, repeating sounds. This is even the case when our attention is diverted to other tasks - showing that there is continuous, sub-conscious processing that is very effective at detecting rhythms in our auditory inputs. This might go some way to explaining why all human societies feature some form of rhythmic musical tradition, including genres like polyrhythmic African drumming and thumping dance floor beats.

The Beat in society
It’s clear that an important component of most music is a regular pulse, or beat. The beat provides a regular structure on which we can build harmonies, rhythms and melodies. As demonstrated by the audience in a clapping task, humans are very good at detecting the beat of a piece of music and then moving in sync with it - in other words, dancing. Any Youtube video search would also reveal that our fascinating ability starts at an early age. What is happening in the brain when we detect a beat?

In studies by Dr Katie Overy of the University of Edinburgh, participants were tested to see if they could tell if the beat was repeated in patterns of fours, threes or twos, corresponding to 4/4, 3/4 and 2/4 times for musicians. Using fMRI scans to show active brain regions, Dr Katie Overy showed that groups of neurons deep inside the brain called the Basal Ganglia are very active when carrying out this task. The Basal Ganglia are highly connected regions that are really important in both sensory and motor processing, so this might be an interesting link between listening and moving to a beat. Not only this, but diseases involving the Basal Ganglia, such as Parkinson’s Disease, result in impaired beat detection. Perhaps by using music in more therapies we can provide better ways of treating Parkinson’s Disease and other Basal Ganglia disorders.

The emotional response to music
As most would agree, the soundtrack to a film deeply influences how a scene is portrayed. For instance, dissonant melodies convey discomfort and fear whereas smooth, major keys give a sense of calm and peace. At its most extreme, a piece of music can literally make our hairs stand up on end and give us the ‘chills’. This strong emotional response was measured by Dr Alan Watson of Cardiff University.

Dr Alan Watson’s lab used lie detectors to find out when we get the chills from a piece of music. This is due to the fact that lie detectors are very sensitive to changes in autonomic nervous system activity, such as sweating and pulse rate. Since our autonomic nervous system changes in response to strong emotions, the lie detector is a nifty way of showing when we get the chills! Using various imaging studies, the researchers were able to show that the chills are accompanied by a huge release of dopamine in the ‘pleasure’ circuits in the brain. This thus helps to explain why we can react so strongly to music.

Congenital Amusia and musicality
Some individuals are unable to enjoy music. Some, for example, even have trouble distinguishing between Happy Birthday and the National Anthem. These people may suffer from a condition called Congenital Amusia, a disorder of interpreting musical patterns. Yet, studies of these unique individuals may uncover just how innate musicality can be in the human brain. Dr Lauren Stewart from UCL collaborated with the BBC to carry out some of these studies.

Using a test called the Montreal Battery, the researchers found that people with this disorder have difficulty distinguishing musical tones compared with controls. They even have some trouble in detecting changes in speech tones, such as a question or a command. The research got more elaborate. The experimenters designed an artificial nonsense language and asked participants to detect if they heard a particular word in a phrase e.g. Pa-ti-ba. Interestingly, amusics were no different to controls, even when the ‘language‘ was replaced by musical tones! This indicates that amusia-sufferers may not have an absolute deficit in distinguishing pitches, but rather a lower confidence when doing so. This also indicates that a form of musicality is present in all individuals but can be honed by constant practice.

Dementia and music
Most of us are acquainted with someone who is going through the pain of dementia. It’s a very isolating ordeal for all involved and it’s expected to get much more common within the next few decades. Is music a good way of maintaining contact with sufferers who are gradually losing other precious memories?

Dr Jason Warren from UCL began by emphasising the complexity of music as a cognitive function. It’s encoded in many brain regions and evokes strong emotional and associative memories of events of that concert, party etc. All types of dementia have unique patterns of brain region damage. For example, Frontotemporal dementia (FTD) has specific damage in the knowledge-encoding temporal regions and the motor and emotion-encoding frontal regions of the brain. It turns out that FTD patients have selective impairments in identifying scary and angry music. This may prove to be an effective diagnostic tool because music is a much more robust memory than current tests using the memory of faces.


Peter Todd of the Alzheimer’s Society gave a fascinating talk about his experiences. He organises weekly singing groups called Singing for the Brain. The only difference here is that the participants are dementia sufferers at all stages of the disease. While it might not seem easy to pull off a group session with this requirement, the results of these groups are very encouraging. The groups have even performed at festivals and for BBC Radio 4! The aim of the groups is to include everyone at a personal level, no matter what level of dementia they are suffering. One heartwarming example of the good effects of these groups is of one patient who had lost his short-term memory. He couldn’t even remember that he had been in a singing group for the last hour! However, after every session, it was clear from his posture and manner that he was very upbeat from singing with the group, despite not being able to remember why! Examples like this emphasise the importance of music in social bonding for potentially lonely individuals going through dementia.

Wrap-up
It’s clear that music has been an integral part of human history. This shown by the presence of music in every human culture on Earth and the sheer amount of processing power devoted to music in our brains. The brain is a pattern-seeking machine and it has progressed from interpreting primitive vocalisations in forests to sophisticated music forms. Our emotional connection to music and musicality is preserved to a certain extent in everyone. It also proves to be an effective tool for identifying dementia symptoms and also encourages social inclusion for dementia sufferers.

Oh, and if anyone was curious about how you turn a duck into a soul singer, the answer is: Put it in the microwave until its Bill Withers.

Friday, 6 December 2013

Catalytic Clothing: How Your Jeans Can Purify Air

by Emilie BergstrÓ§m

The UK frequently falls short of meeting EU air pollution emission targets, and it is estimated that air pollution is responsible for 50,000 deaths in the UK each year. Nitrogen oxides, NOx, and volatile organic compounds (VOCs), both produced in massive quantities from motor vehicles and industry, are two of the most prominent classes of pollutants. NOx are known to cause and worsen respiratory diseases, such as asthma and emphysema, and some VOCs are known carcinogens.


It has been known for some time that the harmful NOx and VOCs can be removed from the atmosphere via a catalytic conversion. Nanosized particles of titanium dioxide, TiO2, or nano-titania, are powerful photocatalysts that use sunlight and oxygen to speed up the oxidation of NOx into water soluble nitric acid that can be washed away with the rain, while also converting VOCs into fatty acids and soaps. 

Up until recently, nano-titania catalysts have only been placed on hard surfaces such as the walls of buildings. Helen Storey and Tony Ryan wanted to explore new applications of this technology. They contacted Cristal Global, the second largest supplier of nano-titania, to suggest collaborating on an initiative involving textiles. It was discovered that the efficacy of the catalyst when applied to textiles, particularly denim, was far higher than anticipated.

They have now partnered with the ecological cleaning brand, Ecover, to create a fabric softener able to deliver the photocatalyst to the surface of any piece of clothing during washing. The active agent is packaged within a shell that is attracted towards, and binds to, the surface of the clothing during the wash. Daily wear and washing create no problem for the catalyst particles, and they do not fall off until the cotton fibres of the jeans eventually break.

The key to catalysis, and increasing the rate of removal of NOx, is a high surface area. Nanoparticles have an extremely high ratio of surface area to volume and a pair of jeans has a surface area greater than 195 square feet. It has been estimated that if one person wears Catalytic Clothing for one day, they could remove the same amount of NOx as is produced by the average family in one day. 

A common misconception is that Catalytic Clothing will be a ‘dirt magnet’, putting people at greater risk of exposure to pollutants. This is not the case – the technology won't actively attract any pollutants, but will break down anything that comes within very close proximity of the catalyst's surface.

Wednesday, 4 December 2013

The KILLER whale

The Myriad of Killer Whale Hunting Techniques

by Rob Cooper



A titanic black shape emerges from the sea, huge leering white eyes aflame with malice rip through the sheet of water accompanying the streamlined monster as it emerges from the surf. Noticing its end far too late a seal barely has time to turn before it is grabbed by the neck and twisted voraciously around as the black and white menace of the deep, rather clumsily, makes its way back to the ocean.

Of course we are all well aware the killer whale or Orca is no monster but a simple animal, just as humans are. We’re also aware the large white areas on the flanks of the whale are not its eyes. However the immense range of prey and hunting practices employed by the mighty orca seems to have no compare outside of humans. Indeed the killer whale is one of the only animals in the world to be seen engaging in recreational hunting that can last for days in length (spending over 12 hours chasing and drowning a whale calf only leave all but the tongue and lower jaw uneaten) and has been recorded in several studies to have hunting success rates of nearly 100% on several prey types. This, it hardly needs clarification, is pretty much unmatched anywhere outside our own species.

How does the killer whale do this? What gives it an edge over predators such as sharks which are so well adapted they have remained almost completely unaltered over millions of years? And how do they manage to prey on so many different prey types with little morphological variation?

The answer is relatively simple: Intelligence

Killer whales have an enormous number of hunting strategies that are all applicable to different prey items which allow the different types to predate on a huge variety of marine fauna and avoid injury to themselves even with predating on creatures ten times their size.

Fish herding
Many groups of killer whales herd fish either into shallow water or to the surface by using the pod of whales to encircle and trap the fish. Norwegian killer whales take this a step further and use their tail flukes to stun vast swathes of fish which they can then pick of at their leisure. The combination of concentrated fish and the huge area of effect and stunning impact of the tail flukes means the whales can harvest huge amounts of fish with no need to spend energy chasing and catching individual fish. Some fish are completely pulverised by the huge tail fluke and end life merely as a bloody smear in the wake of their gargantuan predators.




Ice Floats
The only place your safe from killer whales is land right? Unfortunately this turns out to be wrong. Antarctic orcas have learnt to move in unison to create huge waves in the water that can wash seals and/or walrus from ice floats that they take refuge on. The whales actually break apart the ice floats using the movement of their own bodies to generate waves and proceed producing currents to move the floats to open water. This cuts off all avenues of escape and they then displace the seal from the ice with animal generated waves. By this point the seal is so exhausted from being repeatedly knocked of the ice float it has almost no energy to resist the whales attack and with deep water to emerge from the whales are comparatively safe from the seals jaws.


Killer whales targeting ice floats

Beaching 
The classic Orca hunt as mentioned in the first paragraph involves the emergence of the great animals onto land to catch a presumably very surprised and terrified seal: which is a decidedly risky strategy for such a large marine mammal that would crush its own organs under its body mass if it became trapped on the beach. The tactic however seems to work as adult killer whales can be seen nudging younger whales onto the beach in order to learn the trick for themselves. There remain few sights as awe inspiring and terror inducing as a six tonne wall of muscle emerging from the sea to capture its prey.


Orca beaching 

Shark Eaters
Many Killer whale groups have mastered the art of tackling sharks and stingrays through a lesser known phenomena entitled tonic immobility. The whales use their tail flukes or generate currents in order to flip the shark or ray onto its back. Once this has been achieved the shark or ray is completely paralysed whilst it remains on its back and the lethal sting of stingrays becomes inert. Killer whales finding great white sharks in their feeding grounds have been known to ram the shark at full speed and proceed to pull the creature to the surface and eat it alive. In this case the shark documented was a three meter long great white shark attacked by two killer whales who were feeding on the shark’s normal prey of sea lions near San Francisco.



Whale Hunting
Killer whales are second only to humans in their ruthless hunting of giant baleen whales. Antarctic killer whales have been described performing complex cooperative attacks on Bowhead whales with some whales immobilising the prey by attacking the flippers whilst others rammed the whale to cause internal damage such as broken ribs and finally the other whales swam on top of the Bowhead to cover the blowhole and force the Bowhead underwater to drown it. Antarctic killer whales are known to pursue the Finn whale to exhaustion in marathon 12 hour hunts with each whale taking its turn at the head of the pursuit. Killer whales have even been known to attack the giant sperm and blue whales with aggressive bull sperm whales and fully grown blue whales being pretty much the only animals safe from killer whale predation. 

Wednesday, 27 November 2013

Norman Borlaug: “The Man That Saved a Billion Lives”

by Toby Benham


Born on the 25th March 1914, Norman Borlaug has been described as the man that has saved more human lives than anyone who has ever lived. This truly inspirational man devoted his life to help solving world hunger by developing new types of wheat. He was quoted saying, “We are 6.6 billion people now. We can feed 4 billion. I don’t see 2 billion volunteers to disappear”. As well as being the labelled “the father of the green revolution”, Borlaug won the Nobel peace prize in 1970.

After growing up in Iowa, Borlaug went to the University of Minnesota to study Forestry, in between two stints working for the US forestry service. He later returned to the University to do a masters and PhD in plant pathology. This led to him taking a job in Mexico as geneticist and plant pathologist. Not only did this move mean leaving his job at highly respected chemical company DuPont (who had offered to double his salary), he temporarily left behind his pregnant wife and young daughter. His work in Mexico included research in genetics, plant breeding, plant pathology, entomology, agronomy, soil science and cereal technology. This was very successful leading to production of a high yielding, short strawed, disease resistant wheat. He arranged for the new cereal strains to be put into extensive production.

His work was especially influential in India and Pakistan. In fact, between 1965 and 1970, wheat yields nearly doubled in these countries, helping to provide security for feeding expanding populations. Prime Minister Singh and President Patil, both of India, paid tribute saying, “ Borlaug’s life and achievement are testimony to the far reaching contribution that one man’s towering intellect, persistence and scientific vision can make to human peace and progress”.

He died at the age of 95 in 2009 to lymphoma. I hope that after reading this that you can appreciate what an extraordinary man Norman Borlaug was, as well as the great contribution he made not only to science, but to the world’s population. One of the greatest scientists and humanitarians that has ever lived; “the man that saved a billion lives”.

Monday, 25 November 2013

Nomenclature – What’s really in a name?

by Sam Matchette

If I were to ask you what Captain Blackbeard, the Rocky Mountains and jeggings all have in common, what would you say? No, this is not a joke – although this would make for a very intriguing start to a ‘… walked in to a bar’ gag. The answer is simple: they each have a very appropriate and informative name. Captain Blackbeard had a beard that was (probably) black, the Rocky Mountains are certainly rocky and jeggings are the most recent descriptive portmanteau to hit our vocabulary shelves! However, the art of nomenclature (naming) isn’t always as straight forward; a point very relative in the biological world with regards to naming species; formally called Binomial nomenclature.

First and foremost, binomial nomenclature itself differs depending upon the organism you are dealing with. If you are naming animals, you would consider the International Code for Zoological Nomenclature (ICZN), whereas for plants, fungi or algae you would use the – very appropriately named - International Code for Nomenclature for algae, fungi and plants (ICN). Both resources enforce a series of codes and rules that one must abide by, in order to maintain evidential consistency throughout the natural world.


Focusing upon the animal kingdom, the ICZN has six main principles. When a species is first discovered, it is described and given a name. The first principle, named binomial nomenclature, states that the name of any given animal is made up of two Latin names (binomen); a generic name and a specific name. Devised by Carl Linnaeus, this principle embodies all the species seen today, including Homo sapiens, Passer domesticus, Gibbula umbilicalis. This name must be unique, as claimed by the principle of homonymy. The discovered organism’s name is recorded on an ICZN database together with name of its discoverer and the date of discovery. For each species ever described on the database, there is usually a list of names (both generic and specific) provided after the first, long-standing name was put forward. These, essentially irrelevant, names are called the junior synonyms. They only come in to play if a re-classification occurs. If there is a species-split with a new population needing a name, the principle of priority ensures that the new specific name is the oldest available junior synonym. Those name conflicts that cannot be resolved using priority are resolved by the principle of first reviser; the first subsequent author decides which name(s) to use from that moment on. Slightly more confusing is the principle of coordination; which presents when a family-group name, genus-group name or species-group name is established, all other relevant groups must also simultaneously bear that name with relevant prefixes. For example, the family name Giraffidae was established, meaning that the sub-family name (should we need one) automatically becomes Giraffinae. Linking with this is the principle of typification. This claims that any family-group name must have a type (or representative) genus and any genus-group name must have a type species. For example, the family name of Giraffidae has Giraffa as its type genus (as in Giraffa camelopardalis).

Despite the terrifying formality of this process, if all principles are fulfilled, then the fun can begin. And boy, do scientists like to have fun! The beauty of needing to be unique (as the principle of homonymy requires) is that you can be as creative as you like. After all, as with everything, names come in all shapes and sizes; from the great evening bat, Ia io, to the soldier fly, Parastratiosphecomyia stratiosphecomyioides.

Longdong stream salamander 
Unsurprisingly, over the years, the concoction of creativity and taxonomy has produced some very interesting results. Usually, names originate from a description, a location, a person or an organisation relative to the organism’s discovery; however some have become remarkably tenuous and down-right crude. An example that springs to mind is the Batrachuperus longdongensis; a stream salamander with – you guessed it - an in-conspicuously long penis. Less subtle is the lily plant with the name Narcissus assoanus – discovered seemingly by a scientist with a phenomenal grudge. Scientists have even delved in to the world of popular media; notably the spider, Apopyllus now, who appears to be an avid Martin Sheen fan.

One of my personal favourites – from a devilishly, imaginative view point – is the Thorny Devil. This lizard’s scientific name is Moloch horridus; honouring the heaven-rebelling demon Moloch known to devour children, aptly comparative to the lizard’s diet of unsuspecting ants. Furthermore, many scientists have dabbled in creative word-play; creating such scientific names as the leafhopper family, Cicadellidae, which is officially the longest word with all its letters twice, or the palindromic beetle, Orizabus subaziro.

Thorny Devil
For the narcissistic among you, it may be disappointing to hear that it’s just ‘not cricket’ when you name a species after yourself. However, there are ways and means of overcoming this. The obvious being to find a friend that shares your desire to have a species named after them, and then each simultaneously discover a species that can be named after the other person. Undoubtedly fiendish, but no less true as the taxonomists Reichardt and Lange-Bertalot evidently proved; honouring each other with name-bearing species in a Diatom genus.

So, if you’re the buddy biologist type endeavouring for a life of research, you may just want to take a moment and think: what would my species name be? It may be more fun than you think. Now, “Captain Blackbeard, the Rocky Mountains and some Jeggings walk in to a bar…”

Wednesday, 13 November 2013

Ten Extinct Animals you wouldn't want to meet in a dark alleyway

by Rob Cooper


1. Daedon: the ‘terminator pig’

Nicknamed the ‘terminator pig’ this hulking brute of an animal was a member of the ungulate family that today includes pigs, giraffes and deer. It had enormous bony flanges similar to the warts of the warthog which accompanied its titanic jaws giving this predator a bone crushing bite in addition to its fearsome tusks.


2. Titanoboa: the giant snake

This great serpent emerged just after the demise of the dinosaurs in the Paleocene epoch and was estimated at 15 meters long and a weight of 1135kg making it easily the largest snake that has ever existed which would not be vexed in the slightest by swallowing a comparatively measly human.


3. Deinosuchus: 'terror croc' 

One of the three largest crocodilians to have ever existed Deinosuchus could have reached lengths of twelve meters and lived alongside tyrannosaurs such as the fabled T.rex and is theorised to have predated upon the dinosaurs that unknowingly came to drink from cretaceous watering holes. Okay, maybe it wouldn't have fitted in a dark alleyway but such a creature does not deserve to be neglected. 


4. Argentavis: the largest flying bird


The largest flying bird to have ever lived had a wingspan of around seven metres and would have likely scavenged and displaced Miocene predators from their kills. It’s skull morphology suggests it was suited to swallowing prey whole so whilst humans may lie someway from its preferred prey it would still make for an intimidating site emerging from the darkness. 


5. Gigantopithecus: the real yeti 

The legend of the yeti has fascinated many people throughout history and there seems to have been no better candidate than Gigantopithecus. This ape stood at around three meters tall and while its teeth indicate it was exclusively vegetarian an unexpected encounter with such an enormously powerful ape would be far from desirable. 


6. Arctodus simus: the giant bear

Arctodus Simus, the giant short faced bear could look you in the eye whilst still remaining on all four legs. If the titan deigned to stand it would have easily reached three meters in height. Around 11,000 years ago Arctodus Simus is proposed to have filled the niche of a kleptoparasite; intimidating smaller predators such as dire wolves, Smilodon and American lions from their kills with its enormous size and strength.


7. Utahraptor: flesh eating dinosaur 

There had to be at least one theropod (clade to which all carnivorous dinosaurs belong) dinosaur in here. Considering T.rex or Giganotosaurus would find it near impossible to fit inside an alleyway we’ll take the lesser known Utahraptor. The Velociraptor in Jurassic park may have been greatly exaggerated in size, being in reality the size of a turkey, but Utahraptor dominated even these exaggerated raptors reaching seven meters in length and with a sickle claw nine inches in length clearly indicating this 126 million year old predator could disembowel a human with consummate ease. 


8. Megalania: giant monitor

The size of this giant monitor lizard is difficult to determine as several studies place the weight anywhere from 300kg to nearly 2 tonnes. Regardless Megalania is still a monster compared to any modern day lizards. With heavily built limbs and a huge skull full of viscously serrated teeth it is proposed to have hunted Australian megafauna such as Diprotodon the ‘giant wombat’. If that wasn’t bad enough it seems likely Megalania, akin to modern monitor lizards such as the komodo dragon, was venomous making Megalania not only the largest terrestrial lizard but the largest venomous vertebrate to have ever existed. 


9. Kelenken: terror bird 

Picture a three meter tall bird with a skull 28 inches long, 18 inches of which was composed of a beak that was used in the same manner as an axe to inflict debilitating injuries on its prey and you get a rough idea of why it might be a good idea to stay the hell away from Kelenken. Belonging to the aptly named ‘terror birds’ this particular animal had the largest head of any bird known and was theorized to have either delivered viscous hammer blows to crush the bones of large prey or grab hold of smaller prey and shake them in much the same way that a dog might shake a rat today with the small addition that Kelenken would usually end up breaking the back of the unfortunate organism.

10. Euchambersia: Permian predator

By far the smallest animal on this list Euchambersia was a reptile that lived before the dinosaurs in the Permian period 250 million years ago. Euchambersia was a member of the therapsid order of reptiles which included the ancestors of modern day mammals and are often referred to as the ‘mammal like reptiles’. Despite its small stature this predator had an ace up its sleeve… Venom. The large canine teeth clearly exhibited by Euchambersia had venom grooves connected to venom glands in a very similar way to modern snakes in order to inject venom into the prey upon biting down. This killing strategy made Euchambersia a force to be reckoned with in the Permian deserts of South Africa.

Do you have any other suggestions? Let us know in the comments section.

Monday, 11 November 2013

The science of mind reading

by Tom Ridler


The idea of someone being able to tell exactly what we are thinking is no doubt a scary one, but don’t worry, we’re not there yet. This said, the electroencephalogram, or EEG has been used for some time to measure brain activity in human patients and there is a great deal of information to be obtained from all those wiggly lines.

How does EEG work? Our brains are made up of billions of neurons, communicating with each other all of the time. Brain cells “talk” through synapses, creating tiny electrical signals. With so many cells in the brain, this produces masses of electrical activity and it can be measured by placing sensors on the surface of the skull.  This is usually done with the familiar EEG cap, containing a great number of sensors, meaning that different areas of the brain can be measured simultaneously.

What can you see? What we find when we record this brain activity is that the signal within the brain oscillates in wave-like manner. These brain waves may originally seem confusing and random, but analysis has shown that they can be isolated into discrete frequency bands. You can think of the brain like an orchestra, with all the individual instruments creating different sounds that all come together into one complex piece of music.

What does it all mean? These common frequencies may represent differences in brain states. For example, when you are in deep sleep slow oscillations are seen (called delta waves) or during high levels of concentration fast waves (such as beta or gamma oscillations) may occur, signifying intense thought processing. How about some meditation? Well you won’t be doing that without plenty of alpha waves, associated with relaxation and reflection.  

How can it be used? EEG can be used in a great number of ways. We can diagnose some conditions such as epilepsy by recognising seizure activity. There is also potential to help suffers of locked in syndrome (a condition where sufferers, while totally conscious, cannot move or communicate). On a lighter note, many people have been working on ways in which we can control objects with our minds. Just imagine, a brain-machine interface would be able to control a robot, unlock a car or turn on a home appliance just through the power of thought. This isn’t so far of, your own portable (and affordable) EEG machines are available to buy, allowing you to play games and even control the plot of a film through changes in your brain waves. 

Sunday, 10 November 2013

Lake turns animals into petrified statues



Greek mythology will tell you that Medusa was beheaded a long time ago, so those of you rooting for a supernatural or spiritual explanation I am sorry to disappoint. The real cause of this mummification is no less fascinating. Lake Natron, a vast death swamp located in northern Tanzania gets its name from Natron which is a naturally occurring sodium carbonate compound. The compound is sourced from volcanic ash which when collected by surface runoff, flows into the lake and provides the lake with an unnaturally high alkaline content.

Calcium is more readily precipitated from alkaline solutions so over time high amounts of calcium can be precipitated along the shoreline. When animals die and are immersed in the deadly waters of the lake they become petrified and turn into a bizarre and horrific spectacle. Oddly, the lake isn't completely lethal and is home to flocks of daredevil flamingos that return to nest on an annual basis. I should point out that the poses in the photographs are artificially created by photographer Nick Brandt.

by Danny Stubbs