Wednesday, 30 April 2014

Inside story: Professor Andrew Halestrap - School of Biochemistry

Interview by Melissa Levy


Andrew Halestrap is a professor in the school of Biochemistry as well as as the head of his own research group who are interested in both the role of mitochondria in cell death and monocarboxylate (lactate) transporters. If you want more information about the work which he and his group do then click here.

Where did you go to university and what did you study?
“I was at Cambridge, where I studied Natural Sciences specialising in Biochemistry and then I came here to do my PhD. That was a long time ago and I stayed here ever since! I started my PhD working with Dick Denton (Professor Richard Denton), working on the regulation of fat metabolism in the epididymal fat pad. And then I branched out… I stayed in Bristol, got a fellowship and then a lectureship and I stayed here ever since. I’m very unusual [in that] l I stayed here ever since my PhD.”

If you had to describe the research you are doing to someone who doesn't understand the concepts, how would you describe it?
“Well I’ve got two areas of research that I’m doing at the moment. The bigger area of research is how you protect the heart from damage after a heart attack or during heart surgery. So during a heart attack when you have a coronary thrombosis (the coronary artery is clotted with thrombus) the blood supply stops and then the downstream area is gradually getting damaged because it’s got no oxygen. What they do when they bring you in to hospital is to clear the blockage (we call that reperfusion) and unfortunately the reperfusion, which you’ve got to do to restore the heart function…causes more damage. [It works by doing] something to the mitochondria, it turns them into reverse so instead of providing the energy to drive the cell they actually start breaking down ATP and destroying the cell.  This gives you a damaged area called the infarct, which is just dead necrotic tissue. We are understanding the molecular mechanism and developing treatments to prevent that from happening which will prevent the heart from this damage. And it’s relevant in surgery because when you have cardiac surgery you also have to stop the heart which means stopping the supply of blood, and if the surgery is long then you can get this same reperfusion damage. So we’re also working for cardiac surgeons and applying some of the stuff we do in the lab, understanding the mechanism and how we can prevent it, in the clinical field.  There are clinical trials going on with some of this stuff which is quite exciting! The first clinical trial was successful so we’ll keep our fingers crossed.  And then the other area is in lactic acid production in our cells, which is why I sometimes rabbit on about lactic acid (!!). The process whereby lactic acid gets in and out of cells is a process we discovered many years ago working on the molecular mechanism, and the particular interest at the moment is understanding the structure of the transportes so that we can design better inhibitors that could block the process in tumour cells. If you block lactic acid efflux from tumour cells you can actually kill them!”

How would you describe your typical day?
“A lot of my time is spent writing reviews on grant applications and reviewing papers because I act as an editor and referee of papers. A lot of time is spent writing papers, reading papers, talking with my research group; I don’t get to the bench much now. So I talk with my people regularly about what they’re doing and we think about the next set of experiments. Then sometimes of course (like today) I have a fair bit of teaching and marking to do, some days they’ll be very little teaching. And then there’s administrative jobs, various university committees and things that take up [time]”

What’s your favourite part of your job?
“Oh, well either doing bench research which is really fun but I rarely do it, or just thinking through data and deciding what experiments to do next; it can be very exciting but also very frustrating.”

Do you have any advice for someone who’s looking towards a career in science? 
“The first advice is that if you really want to be active in hands on research you’ll have to do a PhD, and you’ll probably end up doing some post-doctoral work as well. If you’re really good, and that’s only a very few now, you may then get a permanent research position as an academic or in a research institute. Other people will probably realise that they’re not quite good enough to get to the top of the pile so they can go off into maybe an industrial position acting as science officer. Realistically far more people will want to do research than will be able to… So some are going to end up, either after the PhD or the postdoc, going into other science related things. It could be teaching, it could be scientific journalism it could be a rep for a biotech company. There are many levels where you could use your science. And other people change completely and become a managing director and go and do an MBA - It’s very varied!”

What is the most memorable moment of your career so far?
“Ooooooh most memorable? Well I’ve had several that’s the problem! I had a eureka moment; I was literally in the bath and I was trying to work out a way of measuring how much this mitochondrial pore was opening in a heart. I was sitting in the bath and I had an idea, it was just a eureka moment and it worked and it’s one of my most cited papers. That was a good one! But there have been plenty of others.”

If you could do research with anyone in the world, dead or alive, who would it be?
“I was asked this by someone else in a different context and I found it very difficult to choose one person because, when you get to my age, you’ve worked with a lot of good people. I don’t know really… I think the scientist I admire most is probably Fred Sanger (who’s now dead). He took up a challenge that people thought was ridiculous - to sequence proteins - and he succeeded and then rather than capitalising on that he thought ‘well I’ll go off and sequence nucleic acids’. And he went and did that and got a second Nobel prize. He’s [also] a very humble guy, and when he was 65 and he decided it was time to retire he just left science and worked in his allotment. I think that’s a very special person.”