Amidst regular breaking news stories of promising developments in the fight against dementia, we’re still no closer to being able to stop its progression. The company that finds a cure for dementia would not only start a revolution in treatments, but also make huge profits doing so. If this is the case, then why are we still waiting for effective treatments after decades of research into this oppressive disease?
Prevalence and treatments for dementia
It’s no secret that dementia is a widespread condition. According to the Alzheimer’s Society, the established prevalence of dementia for 70-79 years is 1 in 25. For those over 80, the rate soars to 1 in 6. Considering the colossal cost to healthcare systems worldwide, the potential benefits of finding an effective treatment far outweigh the cost of making it. However, the current treatments available for dementia are minimal. Drugs such as Donepezil, Galantamine and Memantine serve to temporarily reduce the cognitive impairment caused by Alzheimer’s Disease, but do not target the pathology directly. This means that the more advanced cases eventually cease responding to treatment altogether. The brain tissue is just too damaged to salvage by then. What is desperately needed is a treatment that can actually alter the disease itself, resulting in a slower or even halted progression.It’s not as if pharmaceutical companies haven’t been trying to find disease-modifying treatments of course. Last year the drug Semagecestat failed a massive clinical trial in Alzheimer’s Disease patients. It turned out that patients actually got worse with the drug! In the same year, the catchily-named drug LY2886721 was withdrawn from development due to abnormal liver tests in some trial patients. And failures are costly in the pharmaceutical business. Getting a drug to market can cost millions of pounds and can take over a decade for a company. Thus in the UK at least, industrial research into dementia treatments is getting less funding than ever. This still leaves the question: Why have the drugs failed to work?
Understanding the neuropathology in dementia
The only simple answer so far is that, being a neurological disease, dementia is an extremely complex puzzle to unravel. Take Alzheimer’s Disease for example. A popular hypothesis of its origin is called the Amyloid Cascade Hypothesis. This suggests that the protein Amyloid-beta starts to get produced abnormally in the brain and clumps together outside cells, gradually causing neurons to malfunction and degenerate, resulting in the symptoms we see in Alzheimer’s Disease. One key piece of evidence for this is that a small proportion of patients get early-onset Alzheimer’s Disease and they all have hereditary mutations causing huge amounts of amyloid-beta production. Not only that, but Down’s Syndrome is also associated with amyloid-beta and guess what? Down’s Syndrome sufferers have a high risk of developing Alzheimer’s Disease. From this evidence, it appeared that a good way to slow Alzheimer’s Disease is by reducing the amyloid-beta production in the brain. As shown by Semagecestat and other failed amyloid-beta-modifying compounds, it turned out to be not that simple.For one thing, Amyloid-beta is not the only factor to consider in Alzheimer’s Disease. There are many other hypotheses regarding other proteins and cellular systems involved in the symptoms of Alzheimer’s Disease. The result is a rather confusing jumble of different pathologies that neatly overlap with many other types of dementia, such as Vascular Dementia. Additionally, the stage of dementia is a massive factor. Current treatments stop working because there is so much damage to our brain tissue. Perhaps this is also the case with disease-modifying treatments? What if the only way to slow dementia is to tackle it before it causes extensive damage? To investigate this possibility, companies such as Merck are trialling previously failed drugs in patients with early-stage dementia.
Amyloid-beta protein |